首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   356634篇
  免费   29938篇
  国内免费   15321篇
电工技术   22307篇
技术理论   27篇
综合类   23164篇
化学工业   58220篇
金属工艺   19886篇
机械仪表   22740篇
建筑科学   29336篇
矿业工程   10414篇
能源动力   10316篇
轻工业   22946篇
水利工程   6702篇
石油天然气   19982篇
武器工业   2907篇
无线电   41556篇
一般工业技术   42064篇
冶金工业   17509篇
原子能技术   3903篇
自动化技术   47914篇
  2024年   814篇
  2023年   5788篇
  2022年   9725篇
  2021年   14835篇
  2020年   11336篇
  2019年   9051篇
  2018年   10413篇
  2017年   11585篇
  2016年   10487篇
  2015年   14160篇
  2014年   18046篇
  2013年   22037篇
  2012年   23754篇
  2011年   25213篇
  2010年   21824篇
  2009年   20853篇
  2008年   19913篇
  2007年   18826篇
  2006年   19303篇
  2005年   16770篇
  2004年   11229篇
  2003年   9644篇
  2002年   8709篇
  2001年   7790篇
  2000年   8183篇
  1999年   9242篇
  1998年   7809篇
  1997年   6395篇
  1996年   6002篇
  1995年   5000篇
  1994年   4077篇
  1993年   2940篇
  1992年   2322篇
  1991年   1815篇
  1990年   1333篇
  1989年   1144篇
  1988年   921篇
  1987年   583篇
  1986年   462篇
  1985年   315篇
  1984年   253篇
  1983年   166篇
  1982年   173篇
  1981年   147篇
  1980年   128篇
  1979年   72篇
  1978年   42篇
  1977年   61篇
  1976年   44篇
  1975年   32篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
41.
To investigate the effect of cooking temperature (55, 65, 75, 85 and 95 °C) on texture and flavour binding of braised sauce porcine skin (BSPS), sensory acceptance, microstructure and flavour-binding capacity were investigated during the processing of BSPS. Samples cooked at 85 and 95 °C showed better texture and aroma scores. Hardness and chewiness of BSPS were obviously improved at 85 and 95 °C than control group. Collagen structure was significantly destroyed over 85 °C. The porcine skin collagen heated at 85 and 95 °C showed relatively higher flavour-binding capacity than other samples. The improvement of texture of BSPS was mainly attributed to the degradation of collagen. Higher aroma scores of BSPS were related to intense binding abilities with aroma compounds at 85 and 95 °C. Cooking at 85 or 95 °C could be an optimal cooking temperature for BSPS.  相似文献   
42.
The purpose of the current work was to research the effect of alkali metal oxide on the structure, thermal properties, viscosity and chemical stability in the glass system (R2O–CaO–B2O3–SiO2) systematically. Because the glass would emulsify when Li2O was added to the glass batch, this article did not discuss Li2O. The results showed that when the amount of Na2O was less than 4 mol.%, there was a higher interconnectivity of borate and silicate sub-networks in glass, as more mixed Si–O–B bonds were present in glass. The glass samples exhibited excellent thermal properties and chemical stabilities. As the amount of Na2O exceeded 4 mol.%, the interconnectivity of borate and silicate sub-networks was weakened. The thermal properties and chemical stabilities of the glass samples were reduced. The connectivity of the silicate sub-network was weakened slightly as the Na/K ratio varied, and the coefficient of thermal expansion (CTE) of the glass samples gradually increased, and the resistance to thermal shock (RTS) value gradually decreased. Moreover, the viscosity of the glass samples decreased with the ratio of Na/Si and Na/K increased.  相似文献   
43.
The in situ axial X-ray diffraction patterns of four ceramic powder samples (MgO, Al2O3, AlN, and cBN) that were compressed in a diamond anvil cell under uniaxial non-hydrostatic conditions were recorded. The microscopic deviatoric stress as a function of the pressure was determined from the X-ray diffraction peak broadening analysis: the curves increased approximately linearly with the pressure at the initial compression stage and then levelled off under further compression. Pressure-induced transparency was observed in all of the samples under compression, and the pressure at the turning point on the curves of the microscopic deviatoric stress versus pressure corresponded to the pressure at which the samples became transparent. Analysis of the microstructural features of the pressure-induced transparent samples indicated that the compression caused the grains to fracture, and the broken grains bonded with each other. We demonstrated that the ceramics’ pressure-induced transparency was a process during which the grains were squeezed and broken, the pores were close between the grains, and the broken grains were re-bonded under compression.  相似文献   
44.
Ultrawide band gap semiconductor materials have attracted considerable attention in recent years owing to their great potential in the photocatalytic field. In this study, Zn-doped Ga2O3 nanofibers with various concentrations were synthesized via electrospinning; they exhibited a superior photocatalytic degradation performance of rhodamine B dye compared to that of undoped Ga2O3 nanofibers. The Zn dopant replaced Ga sites via replacement doping, which could increase the concentration of oxygen vacancies and lead to enhanced photocatalytic properties. When the Zn concentration increased, a Ga2O3/ZnGa2O4 hybrid structure formed, which could further enhance the photocatalytic performance. The separation of photogenerated carriers due to Zn doping and heterojunctions were the primary causes of the enhanced photocatalytic performance. This study provides experimental data for the fabrication of high-performance photocatalysts based on Ga2O3 nanomaterials.  相似文献   
45.
The low overall survival rate of patients with pancreatic cancer has driven research to seek a new therapeutic protocol. Radiotherapy (RT) is frequently an option in the neoadjuvant or palliative settings for pancreatic cancer treatment. This study explored the effect of RT protocols on the tumor microenvironment (TME) and their consequent impact on anti-programmed cell death ligand-1 (PD-L1) therapy. Using a murine orthotopic pancreatic tumor model, UN-KC-6141, RT-disturbed TME was examined by immunohistochemical staining. The results showed that ablative RT is more effective than fractionated RT at recruiting T cells. On the other hand, fractionated RT induces more myeloid-derived suppressor cell infiltration than ablative RT. The RT-disturbed TME presents a higher perfusion rate per vessel. The increase in vessel perfusion is associated with a higher amount of anti-PD-L1 antibody being delivered to the tumor. Animal survival is increased by anti-PD-L1 therapy after ablative RT, with 67% of treated animals surviving more than 30 days after tumor inoculation compared to a median survival time of 16.5 days for the control group. Splenocytes isolated from surviving animals were specifically cytotoxic for UN-KC-6141 cells. We conclude that the ablative RT-induced TME is more suited than conventional RT-induced TME to combination therapy with immune checkpoint blockade.  相似文献   
46.
Lithium (Li) metal, as an appealing candidate for the next-generation of high-energy-density batteries, is plagued by its safety issue mainly caused by uncontrolled dendrite growth and infinite volume expansion. Developing new materials that can improve the performance of Li-metal anode is one of the urgent tasks. Herein, a new MXene derivative containing pure rutile TiO2 and N-doped carbon prepared by heat-treating MXene under a mixing gas, exhibiting high chemical activity in molten Li, is reported. The lithiation MXene derivative with a hybrid of LiTiO2-Li3N-C and Li offers outstanding electrochemical properties. The symmetrical cell assembling lithiation MXene derivative hybrid anode exhibits an ultra-long cycle lifespan of 2000 h with an overpotential of ≈30 mV at 1 mA cm−2, which overwhelms Li-based anodes reported so far. Additionally, long-term operations of 34, 350, and 500 h at 10 mA cm−2 can be achieved in symmetrical cells at temperatures of −10, 25, and 50 °C, respectively. Both experimental tests and density functional theory calculations confirm that the LiTiO2-Li3N-C skeleton serves as a promising host for Li infusion by alleviating volume variation. Simultaneously, the superlithiophilic interphase of Li3N guides Li deposition along the LiTiO2-Li3N-C skeleton to avoid dendrite growth.  相似文献   
47.
The present work was conducted to illustrate the mechanism of gel formation of myofibrillar proteins (MPs) under different microwave heating times. The results showed that the denaturation enthalpy (ΔH) of the MPs significantly decreased when the heating time increased from 3 to 9 s and then completely disappeared as the heating time progressed, indicating that the MPs gradually denatured and subsequently aggregated with increasing heating time, which was further verified by the changes in the secondary structure, electrophoretic bands, and gel properties (e.g., water holding capacity and textural profiles) of the MPs. Microstructural images indicated that the MP gel formed under 12 s had the most compact network, indicating that extended microwave heating time could induce quality deterioration of MP gels. Moreover, the hydrophobic forces, electrostatic forces, and disulphide bonds of the MPs gradually intensified with increasing microwave heating time, suggesting that both non-covalent and covalent bonds could promote molecular denaturation and subsequent aggregation of MPs. In addition, correlation analysis revealed that the changes in the molecular conformation of MPs induced by different microwave heating times could effectively regulate the formation of MP gels and their related properties.  相似文献   
48.
Reliable joints of Ti3SiC2 ceramic and TC11 alloy were diffusion bonded with a 50 μm thick Cu interlayer. The typical interfacial structure of the diffusion boned joint, which was dependent on the interdiffusion and chemical reactions between Al, Si and Ti atoms from the base materials and Cu interlayer, was TC11/α-Ti + β-Ti + Ti2Cu + TiCu/Ti5Si4 + TiSiCu/Cu(s, s)/Ti3SiC2. The influence of bonding temperature and time on the interfacial structure and mechanical properties of Ti3SiC2/Cu/TC11 joint was analyzed. With the increase of bonding temperature and time, the joint shear strength was gradually increased due to enhanced atomic diffusion. However, the thickness of Ti5Si4 and TiSiCu layers with high microhardness increased for a long holding time, resulting in the reduction of bonding strength. The maximum shear strength of 251 ± 6 MPa was obtained for the joint diffusion bonded at 850 °C for 60 min, and fracture primarily occurred at the diffusion layer adjacent to the Ti3SiC2 substrate. This work provided an economical and convenient solution for broadening the engineering application of Ti3SiC2 ceramic.  相似文献   
49.
Ti-based amorphous metallic glasses have excellent mechanical, physical, and chemical properties, which is an important development direction and research hotspot of metal composite reinforcement. As a stable, simple, efficient, and large-scale preparation technology of metallic powders, the gas atomization process provides an effective way of preparing amorphous metallic glasses. In this study, the controllable fabrication of a Ti-based amorphous powder, with high efficiency, has been realized by using gas atomization. The scanning electron microscope, energy-dispersive spectrometer, and X-ray diffraction are used to analyze surface morphology, element distribution, and phase structure, respectively. A microhardness tester is used to measure the mechanical property. An electrochemical workstation is used to characterize corrosion behavior. The results show that as-prepared microparticles are more uniform and exhibit good amorphous characteristics. The mechanical test shows that the hardness of amorphous powder is significantly increased as compared with that before preparation, which has the prospect of being an important part of engineering reinforced materials. Further electrochemical measurement shows that the corrosion resistance of the as-prepared sample is also significantly improved. This study has laid a solid foundation for expanding applications of Ti-based metallic glasses, especially in heavy-duty and corrosive domains.  相似文献   
50.
杨乾  范存斐  王毅  任亚琳  毕阳 《食品科学》2021,42(1):243-249
目的:研究抗坏血酸(ascorbic acid,AsA)-还原型谷胱甘肽(reduced glutathione,GSH)循环代谢在水杨酸处理采后甜瓜诱导的过量H2O2清除过程中的作用。方法:用4 mmol/L水杨酸浸泡‘玉金香’厚皮甜瓜10 min,测定处理后果实常温贮藏过程中丙二醛(malondialdehyde,MDA)含量,分析活性氧的积累水平、超氧化物歧化酶(superoxide dismutase,SOD)和过氧化氢酶(catalase,CAT)活力,以及AsA-GSH循环过程相关酶活力及产物和底物含量。结果:水杨酸处理降低了果实MDA含量,第10天处理组MDA含量较对照组降低14.6%;显著提高了果实O2-·的产生速率和H2O2含量(P<0.05),其中处理后第2天O2-·的产生速率高出同期对照组的1.9 倍,第6天H2O2含量高出对照组果实29.7%;提高了果实SOD活力,但抑制了CAT活力,说明H2O2的清除可能是依赖于除酶促系统外的其他系统。此外,水杨酸处理提高了果实抗坏血酸过氧化物酶、单脱氢抗坏血酸过氧化物酶、脱氢抗坏血酸还原酶和谷胱甘肽还原酶的活力,增加了AsA和氧化型谷胱甘肽的含量,降低了脱氢抗坏血酸和GSH的含量。结论:水杨酸处理诱导了厚皮甜瓜果实的氧爆,抑制了MDA产生,由水杨酸诱导产生的过量H2O2主要依靠AsA-GSH循环系统清除。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号